Safeguards Challenges and Safeguards R&D in JAEA

Masato Hori

Deputy Director, Integrated Support Center for Nuclear Nonproliferation and Nuclear Security

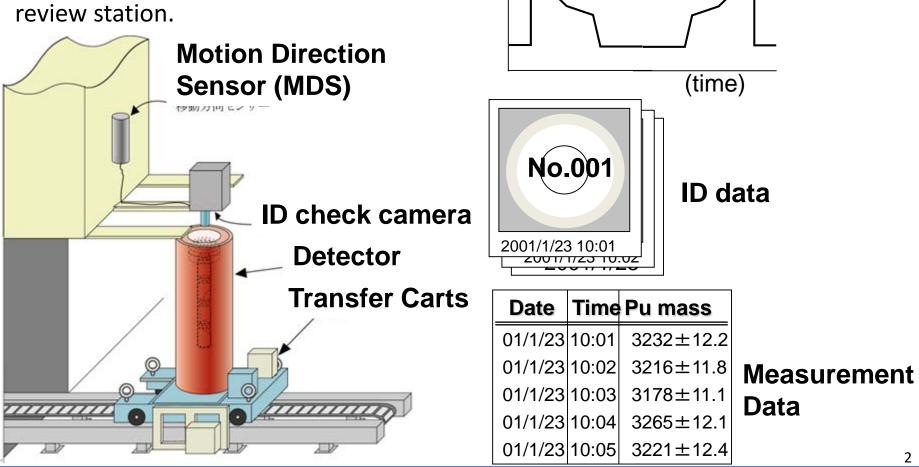
Japan Atomic Energy Agency

Panel Discussion 2 The International Forum on Peaceful Use of Nuclear Energy, Nuclear Nonproliferation and Security 13 December 2018

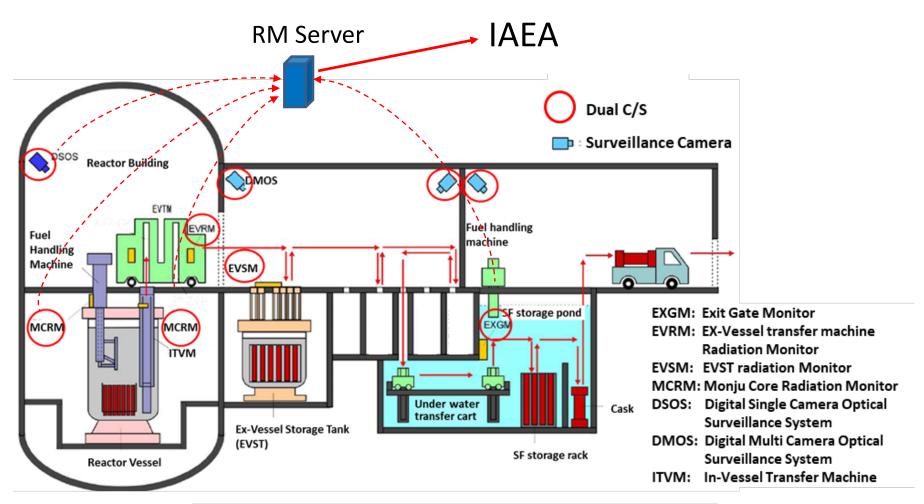
Safeguards Challenges

Effective and efficient safeguards for

- Spent fuel transfer
- Large scale spent fuel dry storage
- Shutdown facilities
- Facilities under decommissioning
- New facility type: Small Modular Reactor, Accelerator Driven System


Shipment

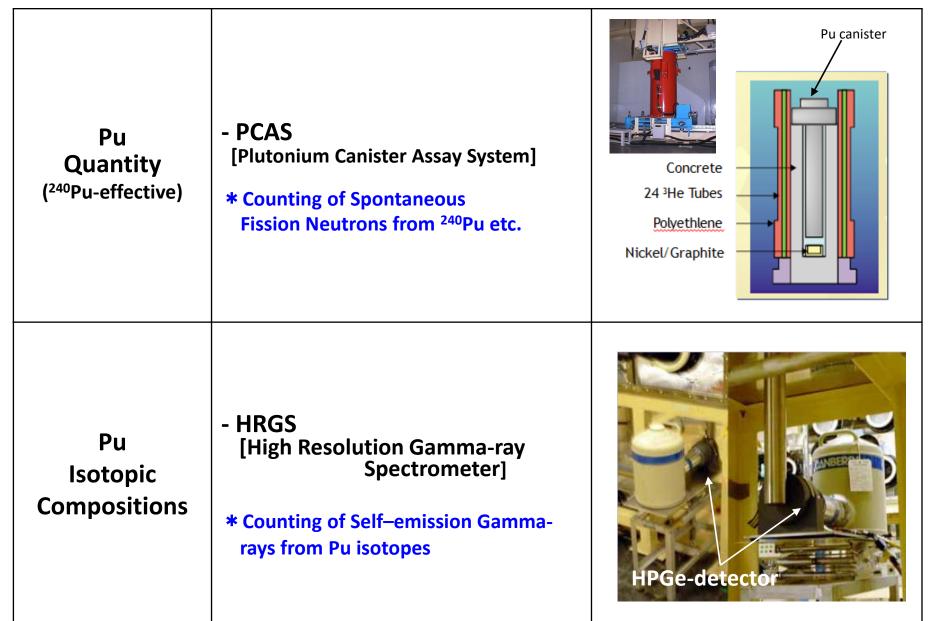
Unattended NDA system at PFPF


Receipt

MDS data

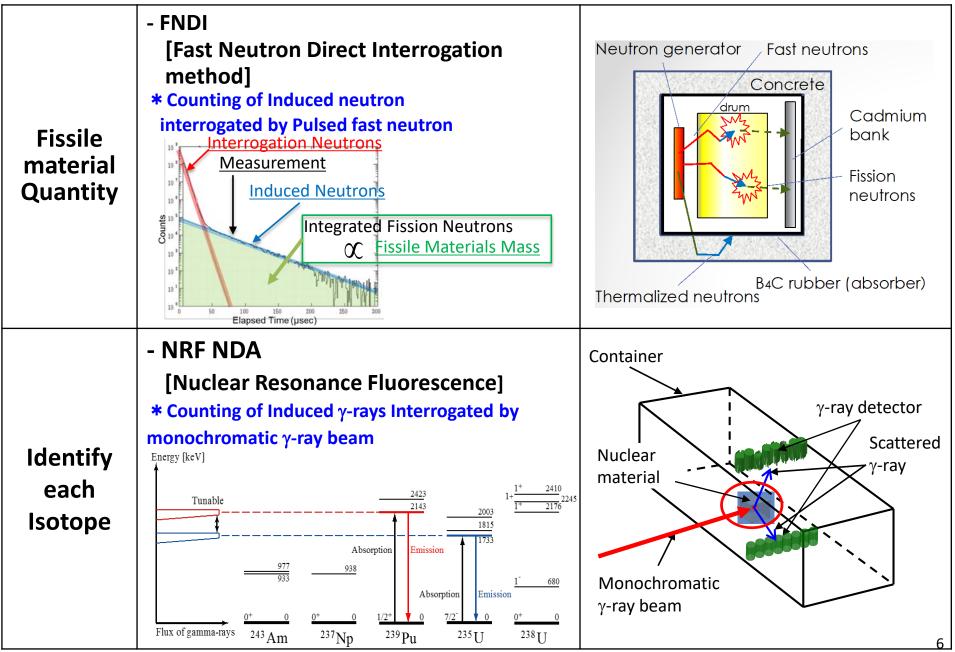
- Once triggered by radiation detector, ID checked by camera and NDA system automatically activated.
- Acquired data is transferred to data review station.

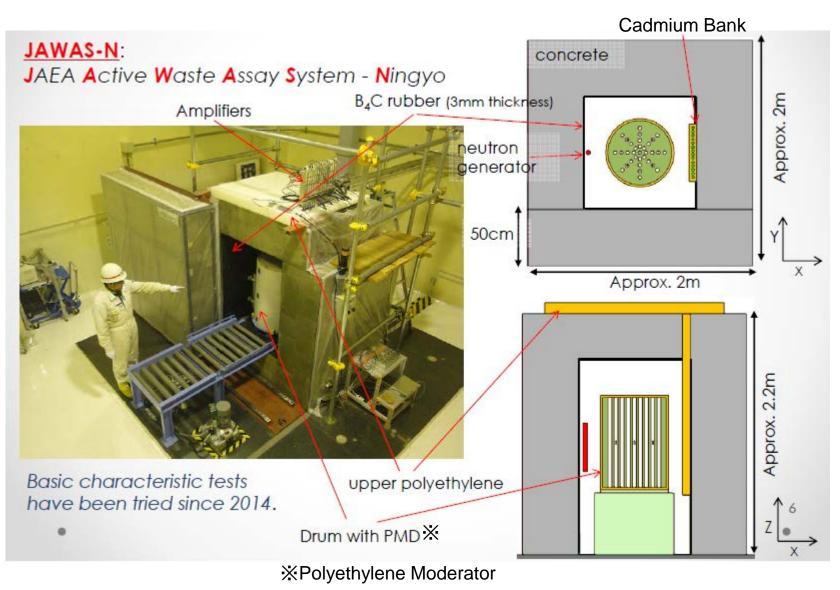
Safeguards R&D Dual C/S and Remote Monitoring


"Monju" Safeguards equipment for spent fuel transfer

NDA Technologies

NDA Types	Brief Explanation		
Passive Type	Detection of self-emitted radiations from NM	Radiation Detectors	
Active Type	Using outer sources of radiation to activate NM Detection of induced / transmitted radiations	Radiation Induced Radiation United Radiation NM NM Conce	


Passive type NDA



Active type NDA

FNDI Method (JAWAS-N)

JAEA's Safeguards R&D and support to IAEA

- Develop NDA or other technologies to support effective and efficient safeguards implementation
- Provide technical skills, knowledge and training to support IAEA verification activities

Support IAEA IAEA Inspector Training

Reprocessing Plant Safeguards

As part of Member State support programme to the IAEA, JAEA is hosting annual training course on safeguards for reprocessing plants safeguards for IAEA and NRA inspectors.

JNC-1 (site-level approach) and DCVD

Upon request, JAEA is hosting the JNC-1(TRP, PCDF, PPFF, PFPF, Tokai R&D) and DCVD training courses

Support IAEA

	JPDR	JRR-1	Old JRR-3
Туре	BWR	Water boiler type	Heavy water moderate and cooling type
Thermal power	45MW (JPDRII 90MW) Electric Power 12.5MW	50kW	10MW
Period of dismantling activities	Around 15 years	Around 9 years	Around 3 years
Estimated cost of dismantling *	10.1 B yen (89.4 M US\$)	0.9 B yen (7.96 M US\$)	2.9 B yen (25.7 M US\$)

* excluding waste disposal cost

Support IAEA

Dismantlement of JPDR

Туре	BWR
Thermal power	45MW (JPDRII 90MW)
Electric power	12.5MW
Reactor vessel	2m diameter 8m height
Fuel	2.6%UO ₂
Thermal neutron flux density	3.8×10 ¹³ n/cm²∙sec (average)

